
SysToMath IO C++ Libraries Interface Reference Manual
Version 1.07-r348

Generated by Doxygen 1.5.4-20071203

Thu Jan 3 20:42:21 2008



CONTENTS 1

Contents

1 SysToMath IO C++ Libraries Interface Main Page 1

2 SysToMath IO C++ Libraries Interface Module Index 1

3 SysToMath IO C++ Libraries Interface Class Index 1

4 SysToMath IO C++ Libraries Interface Class Index 2

5 SysToMath IO C++ Libraries Interface File Index 3

6 SysToMath IO C++ Libraries Interface Module Documentation 3

7 SysToMath IO C++ Libraries Interface Class Documentation 6

8 SysToMath IO C++ Libraries Interface File Documentation 52

9 SysToMath IO C++ Libraries Interface Page Documentation 55

1 SysToMath IO C++ Libraries Interface Main Page

1.1 Introduction

This documentation describes the C++ libraries contained in the SysToMath IO C++ Libraries package:

• SysToMath Device C++ Library (Headers only)

• SysToMath W32Device C++ Library

• SysToMath UsbDevice C++ Library

1.2 Supported Tool Families

The C++ libraries contained in the SysToMath IO C++ Libraries package are designed to support the tool
families:

• Microsoft Visual Studio Tool Family

• GNU Tool Family

2 SysToMath IO C++ Libraries Interface Module Index

2.1 SysToMath IO C++ Libraries Interface Modules

Here is a list of all modules:

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



3 SysToMath IO C++ Libraries Interface Class Index 2

SysToMath Device C++ Library 3

Device: Abstract Base Class for Generic Devices 3

SysToMath USB Device C++ Library 4

UsbDevice: Base Class for USB Devices 5

SysToMath Win32 Device C++ Library 5

W32Device: Base Class for Win32 Devices 6

3 SysToMath IO C++ Libraries Interface Class Index

3.1 SysToMath IO C++ Libraries Interface Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

stm::Device 6

stm::UsbDevice 25

stm::W32Device 42

stm::Device::Descriptor 21

stm::Device::Version 22

stm::UsbCtrl 24

stm::UsbDevice::InterfaceClass 38

stm::UsbPipe 38

stm::Uuid 39

stm::W32Device::InterfaceClass 51

4 SysToMath IO C++ Libraries Interface Class Index

4.1 SysToMath IO C++ Libraries Interface Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

stm::Device (Abstract base class defining the C++ API for a generic device ) 6

stm::Device::Descriptor (Objects of type Device::Descriptor describe system dependent as-
pects of a Device as a pair of a void pointer and a void function pointer ) 21

stm::Device::Version (Device driver version ) 22

stm::UsbCtrl (Type specifying the request type encoding the transfer direction, the value and
the index of a USB control request ) 24

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



5 SysToMath IO C++ Libraries Interface File Index 3

stm::UsbDevice (Class defining the C++ API for a libusb controlled USB device inheriting the
generic stm::Device C++ API ) 25

stm::UsbDevice::InterfaceClass (Type describing a libusb controlled USB device interface
class ) 38

stm::UsbPipe (Type specifying the configuration, the interface, the alternate setting, and the
endpoint of the USB pipe to be used for a USB bulk or interrupt transfer ) 38

stm::Uuid (Universal unique identifier storing its fields in little endian format ) 39

stm::W32Device (Class defining the C++ API for a Windows device inheriting the generic
stm::Device C++ API ) 42

stm::W32Device::InterfaceClass (Type describing a Windows device interface class ) 51

5 SysToMath IO C++ Libraries Interface File Index

5.1 SysToMath IO C++ Libraries Interface File List

Here is a list of all documented files with brief descriptions:

device.hpp (Abstract base class stm::Device forming the ANSI-C++ API for generic devices ) 52

usbdevice.hpp (Base class stm::UsbDevice forming the ANSI-C++ API for libusb controlled
USB devices ) 53

w32device.hpp (Base class stm::W32Device forming the ANSI-C++ API for Win32 devices ) 54

6 SysToMath IO C++ Libraries Interface Module Documentation

6.1 SysToMath Device C++ Library

Collaboration diagram for SysToMath Device C++ Library:

Device: Abstract Base Class for Generic DevicesSysToMath Device C++ Library

6.1.1 Detailed Description

SysToMath Device C++ Library (stmdevice).

The SysToMath Device C++ Library consists of C++ header files providing the abstract base class
stm::Device forming the ANSI-C++ API for generic devices.

Modules

• Device: Abstract Base Class for Generic Devices
Abstract base class for generic devices neutralizing the native operating system interfaces.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



6.2 Device: Abstract Base Class for Generic Devices 4

6.2 Device: Abstract Base Class for Generic Devices

Collaboration diagram for Device: Abstract Base Class for Generic Devices:

Device: Abstract Base Class for Generic DevicesSysToMath Device C++ Library

6.2.1 Detailed Description

Abstract base class for generic devices neutralizing the native operating system interfaces.

Files

• file device.hpp
Abstract base class stm::Device forming the ANSI-C++ API for generic devices.

Classes

• struct stm::Uuid
Universal unique identifier storing its fields in little endian format.

• class stm::Device
Abstract base class defining the C++ API for a generic device.

• struct stm::Device::Version
Device driver version.

Functions

• std::ostream & stm::operator<< (std::ostream &os, const Device &device)
Insert a description of the Device device into os.

6.2.2 Function Documentation

6.2.2.1 std::ostream& stm::operator<< (std::ostream & os, const Device & device)

Insert a description of the Device device into os.

The function inserts a verbal description of the Device device into the output stream os and returns os.

6.3 SysToMath USB Device C++ Library

Collaboration diagram for SysToMath USB Device C++ Library:

UsbDevice: Base Class for USB DevicesSysToMath USB Device C++ Library

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



6.4 UsbDevice: Base Class for USB Devices 5

6.3.1 Detailed Description

SysToMath USB Device C++ Library (stmusbdevice).

The SysToMath USB Device C++ Library consists of a library object providing the base class
stm::UsbDevice forming the ANSI-C++ API for USB devices.

Modules

• UsbDevice: Base Class for USB Devices
Base class for USB devices neutralizing the native operating system interfaces.

6.4 UsbDevice: Base Class for USB Devices

Collaboration diagram for UsbDevice: Base Class for USB Devices:

UsbDevice: Base Class for USB DevicesSysToMath USB Device C++ Library

6.4.1 Detailed Description

Base class for USB devices neutralizing the native operating system interfaces.

Files

• file usbdevice.hpp
Base class stm::UsbDevice forming the ANSI-C++ API for libusb controlled USB devices.

Classes

• struct stm::UsbPipe
Type specifying the configuration, the interface, the alternate setting, and the endpoint of the USB pipe to
be used for a USB bulk or interrupt transfer.

• struct stm::UsbCtrl
Type specifying the request type encoding the transfer direction, the value and the index of a USB control
request.

• class stm::UsbDevice
Class defining the C++ API for a libusb controlled USB device inheriting the generic stm::Device C++
API.

• struct stm::UsbDevice::InterfaceClass
Type describing a libusb controlled USB device interface class.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



6.5 SysToMath Win32 Device C++ Library 6

6.5 SysToMath Win32 Device C++ Library

Collaboration diagram for SysToMath Win32 Device C++ Library:

W32Device: Base Class for Win32 DevicesSysToMath Win32 Device C++ Library

6.5.1 Detailed Description

SysToMath Win32 Device C++ Library (stmw32device).

The SysToMath Win32 Device C++ Library consists of a library object providing the base class
stm::W32Device forming the ANSI-C++ API for Win32 devices.

Modules

• W32Device: Base Class for Win32 Devices
Base class for Win32 devices neutralizing the native operating system interfaces.

6.6 W32Device: Base Class for Win32 Devices

Collaboration diagram for W32Device: Base Class for Win32 Devices:

W32Device: Base Class for Win32 DevicesSysToMath Win32 Device C++ Library

6.6.1 Detailed Description

Base class for Win32 devices neutralizing the native operating system interfaces.

Files

• file w32device.hpp
Base class stm::W32Device forming the ANSI-C++ API for Win32 devices.

Classes

• class stm::W32Device
Class defining the C++ API for a Windows device inheriting the generic stm::Device C++ API.

• struct stm::W32Device::InterfaceClass
Type describing a Windows device interface class.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7 SysToMath IO C++ Libraries Interface Class Documentation 7

7 SysToMath IO C++ Libraries Interface Class Documentation

7.1 stm::Device Class Reference

Inheritance diagram for stm::Device:

stm::Device

stm::UsbDevice stm::W32Device

7.1.1 Detailed Description

Abstract base class defining the C++ API for a generic device.

This class is intended to serve as base class of a special device class which shall implement the interface of
stm::Device.

Definition at line 398 of file device.hpp.

Public Types

• enum OpenMode {

NoAccess = 0x00000000,

ReadAccess = 0x00000001,

WriteAccess = 0x00000002,

ReadWriteAccess = ReadAccess |WriteAccess }
Open mode flags (bitwise orable).

• enum ErrorState {

NoError = 0,

ReadError = 1,

WriteError = 2,

ControlError = 3,

ResourceError = 4,

OpenError = 5,

CloseError = 6,

SeekError = 7,

ArgumentError = 8,

UnknownError = 9 }
Error state values.

• enum ErrorFlags {

ErrorFlagMask = 0x7fff0000,

SystemError = 0x00010000 }
Error flags.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 8

• enum {

NoFlags = 0x00000000,

AcceptTimeout = 0x00000001 }
Bitwise orable operation flag bits for read(), write() and control().

• enum DescribeFlags {

IndentMask = 0x0000000f,

IndentFirst = IndentMask + 1,

NoPropertyNames = IndentFirst << 1,

DefaultProperties = NoPropertyNames << 1,

VerboseProperties = DefaultProperties << 1 | DefaultProperties,

AllProperties = ∼ ((DefaultProperties << 2) - 1),

DeviceType = DefaultProperties << 2,

DeviceUuid = DeviceType << 1,

DriverVersion = DeviceUuid << 1 }
Describe flags (bitwise orable).

• enum Timeout {

DefaultTimeout = -1,

Forever = INT_MAX }
Special timeout values.

Public Member Functions

• Device (const Uuid &uuid=Uuid(), const std::string type=std::string(), int defaultTimeout=Forever,
const Descriptor &descr=Descriptor())

Constructor optionally setting the Uuid of the Device to uuid, the type string of the Device to type, the
default operation timeout of the Device to defaultTimeout milliseconds and the Descriptor of the Device to
descr.

• Device (int defaultTimeout, const Descriptor &descr=Descriptor())
Constructor setting the default operation timeout of the Device to defaultTimeout milliseconds and the
Descriptor to descr.

• Device (const Uuid &uuid, const std::string type, const Version &version, int defaultTime-
out=Forever, const Descriptor &descr=Descriptor())

Constructor setting the Uuid of the Device to uuid, the type string and version of the Device to type and
version, respectively, and the default operation timeout of the Device to defaultTimeout milliseconds which
defaults to infinite.

• Device (const Device &other)
Copy constructor.

• Device & operator= (const Device &other)
Copy assignment operator.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 9

• virtual ∼Device ()
Destructor.

• virtual const Uuid & uuid () const
The virtual method shall return the Uuid of this Device.

• virtual void setUuid (const Uuid &uuid)
The virtual method shall set the Uuid of this Device to uuid.

• const std::string & property (const std::string &name) const
The method returns the string value of property name of this Device.

• void setProperty (const std::string &name, const std::string &value)
The method sets the property name of this Device to value.

• bool unsetProperty (const std::string &name)
The method unsets the property name of this Device to value and returns true, if it were set, else false.

• bool hasProperty (const std::string &name)
The method returns true, if the property name is set for this Device, else false.

• virtual const std::string & type () const
The virtual method shall return the type string of this Device.

• virtual void setType (const std::string &type)
The virtual method shall set the type string of this Device to type.

• virtual Version version () const
The virtual method shall return the Version of this Device.

• virtual void setVersion (const Version &version)
The virtual method shall set the Version of this Device to version.

• virtual int defaultTimeout () const
The virtual method shall return the default timeout of this Device.

• virtual void setDefaultTimeout (int defaultTimeout=Forever)
The virtual method shall set the default operation timeout in milliseconds of this Device to defaultTimeout.

• virtual const Descriptor & descr () const
Return the Device::Descriptor of this Device.

• virtual void setDescr (const Descriptor &descr)=0
Set the Device::Descriptor of this Device to descr.

• virtual bool canRead () const
Return the read capability of this Device.

• virtual bool canWrite () const
Return the write capability of this Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 10

• virtual bool canControl () const
Return the control capability of this Device.

• virtual bool canSeek () const
Return the seek capability of this Device.

• virtual int error () const
Return the error state of this Device.

• virtual void setError (int error, const std::string &msg=std::string()) const
Set the error state and error string of this Device according to error and msg.

• virtual void clearError () const
Clear the error state and error string of this Device.

• virtual std::string errorString (bool msgOnly=false) const
Return the error string of this Device.

• virtual void augmentErrorString (const std::string &prefix, const std::string &suffix=std::string())
const

Augment the error string of this device.

• virtual bool isOpen () const
The virtual method shall return true, if this Device is open, else false.

• virtual unsigned int openMode () const
The virtual method shall return the open mode of this Device.

• virtual bool open (unsigned int openMode=ReadWriteAccess)
The virtual method shall open this Device in openMode, if possible and return true on success, else false.

• virtual bool close ()
The virtual method shall close this Device, if possible and return true on success, else false.

• virtual int64_t read (void ∗data, int64_t maxLen, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

The virtual method shall read maximal maxLen bytes from this Device and store them in the buffer pointed
to by data.

• virtual int64_t write (const void ∗data, int64_t len, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

The virtual method shall write len bytes from the buffer pointed to by data to this Device.

• virtual int64_t control (unsigned int request, const void ∗inData, int64_t inLen, void ∗outData,
int64_t maxOutLen, int timeout=DefaultTimeout, unsigned int flags=NoFlags) const

The virtual method shall perform the control operation specified by request for this Device with input data
of length inLen pointed to by inData producing output data of maximal length maxOutLen in the buffer
pointed to by outData.

• virtual int64_t size () const

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 11

The virtual method shall return the size of this Device, if it is an opened random access device, else -1.

• virtual int64_t pos () const
The virtual method shall return the access position of this Device, if it is an opened random access device,
else -1.

• virtual bool seek (int64_t pos)
The virtual method shall set the access position of this Device to pos and return true on success, if it is an
opened random access device, else it shall return false.

• virtual bool reset ()
The virtual method shall set the access position of this Device to 0 and return true on success, if it is an
opened random access device, else it shall return false.

• virtual std::ostream & describe (std::ostream &os, unsigned int flags=DefaultProperties) const
Insert a description of this Device into os.

Classes

• struct Descriptor
Objects of type Device::Descriptor describe system dependent aspects of a Device as a pair of a void pointer
and a void function pointer.

• struct Version
Device driver version.

7.1.2 Member Enumeration Documentation

7.1.2.1 enum stm::Device::OpenMode

Open mode flags (bitwise orable).

The enumerators of Device::OpenMode specify the possible access modes of a Device.

Enumerator:

NoAccess No acces, Device not open.

ReadAccess Read access, Device readable.

WriteAccess Write access, Device writeable.

ReadWriteAccess Read and write access.

Definition at line 405 of file device.hpp.

7.1.2.2 enum stm::Device::ErrorState

Error state values.

The enumerators of Device::ErrorState indicate the reason of the last Device error occurred.

Enumerator:

NoError No error.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 12

ReadError Error during read().

WriteError Error during write().

ControlError Error during control().

ResourceError Resource error.

OpenError Error during open().

CloseError Error during close().

SeekError Error during seek(), reset(), pos() or size().

ArgumentError Invalid argument.

UnknownError Unknown error.

Definition at line 416 of file device.hpp.

7.1.2.3 enum stm::Device::ErrorFlags

Error flags.

Enumerator:

ErrorFlagMask All error flags shall be covered by that mask.

SystemError Indicates that the error string shall be augmented by a system error description, if
available.

Definition at line 432 of file device.hpp.

7.1.2.4 anonymous enum

Bitwise orable operation flag bits for read(), write() and control().

Enumerator:

NoFlags No flag bits set.

AcceptTimeout Timeout is no error.

Definition at line 442 of file device.hpp.

7.1.2.5 enum stm::Device::DescribeFlags

Describe flags (bitwise orable).

The enumerators of Device::DescribeFlags specify output format and extent produced by describe().

Enumerator:

IndentMask Mask for indentation field.
If the value masked is not 0, each property is output on a new line indented by this value. If it is
0, all properties are enumerated on one line separated by commas.

IndentFirst If set, also the first property is indented, else not and also its name is omitted.
This flag has no effect, if no indentation is performed.

NoPropertyNames If set and no indentation is performed, all property names are omitted.

DefaultProperties If set, the device specific default properties are included.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 13

VerboseProperties If set, the device specific verbose properties are included which include the device
specific default properties.

AllProperties If set, all device specific properties are included.

DeviceType If set, the device type property is included, else not.

DeviceUuid If set, the device UUID property is included, else not.

DriverVersion If set, the driver version property is included, else not.

Reimplemented in stm::UsbDevice, and stm::W32Device.

Definition at line 451 of file device.hpp.

7.1.2.6 enum stm::Device::Timeout

Special timeout values.

Enumerator:

DefaultTimeout Use default timeout of this Device.

Forever Wait forever.

Definition at line 489 of file device.hpp.

7.1.3 Constructor & Destructor Documentation

7.1.3.1 stm::Device::Device (const Uuid & uuid = Uuid(), const std::string type =
std::string(), int defaultTimeout = Forever, const Descriptor & descr = Descriptor())

Constructor optionally setting the Uuid of the Device to uuid, the type string of the Device to type, the
default operation timeout of the Device to defaultTimeout milliseconds and the Descriptor of the Device to
descr.

The default Uuid is null as is the default type string, whereas the default defaultTimeout is infinite and the
default descr is invalid.

7.1.3.2 stm::Device::Device (int defaultTimeout, const Descriptor & descr = Descriptor())

Constructor setting the default operation timeout of the Device to defaultTimeout milliseconds and the
Descriptor to descr.

7.1.3.3 stm::Device::Device (const Uuid & uuid, const std::string type, const Version & version,
int defaultTimeout = Forever, const Descriptor & descr = Descriptor())

Constructor setting the Uuid of the Device to uuid, the type string and version of the Device to type and
version, respectively, and the default operation timeout of the Device to defaultTimeout milliseconds which
defaults to infinite.

Moreover, the Descripor is set to descr defaulting to invalid.

7.1.3.4 stm::Device::Device (const Device & other)

Copy constructor.

Only copyable, if the Device::Descriptor of other is invalid. Then the constructed Device object is a copy
of other with the exception that its Uuid is null.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 14

7.1.3.5 virtual stm::Device::∼Device () [virtual]

Destructor.

If this Device is open, it is closed first.

7.1.4 Member Function Documentation

7.1.4.1 Device& stm::Device::operator= (const Device & other)

Copy assignment operator.

Only copyable, if the Device::Descriptor of this Device and of other are invalid. Then this Device is
replaced with a copy of other with the exception that its Uuid is null.

7.1.4.2 virtual const Uuid& stm::Device::uuid () const [virtual]

The virtual method shall return the Uuid of this Device.

The default implementation returns the Uuid of this Device set by the constructor or by setUuid().

7.1.4.3 virtual void stm::Device::setUuid (const Uuid & uuid) [virtual]

The virtual method shall set the Uuid of this Device to uuid.

The default implementation sets the Uuid of this device to uuid.

7.1.4.4 const std::string& stm::Device::property (const std::string & name) const

The method returns the string value of property name of this Device.

If property name was not set, an empty string is returned.

7.1.4.5 void stm::Device::setProperty (const std::string & name, const std::string & value)

The method sets the property name of this Device to value.

7.1.4.6 bool stm::Device::unsetProperty (const std::string & name)

The method unsets the property name of this Device to value and returns true, if it were set, else false.

7.1.4.7 bool stm::Device::hasProperty (const std::string & name)

The method returns true, if the property name is set for this Device, else false.

7.1.4.8 virtual const std::string& stm::Device::type () const [virtual]

The virtual method shall return the type string of this Device.

The default implementation returns the type string of this Device set by the constructor or by setType() and
is implemented as property.

7.1.4.9 virtual void stm::Device::setType (const std::string & type) [virtual]

The virtual method shall set the type string of this Device to type.

The default implementation sets the type string of this device to type and is implemented as property.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 15

7.1.4.10 virtual Version stm::Device::version () const [virtual]

The virtual method shall return the Version of this Device.

The default implementation returns the Version of this Device set by the constructor or by setVersion().

7.1.4.11 virtual void stm::Device::setVersion (const Version & version) [virtual]

The virtual method shall set the Version of this Device to version.

The default implementation sets the Version of this device to version.

7.1.4.12 virtual int stm::Device::defaultTimeout () const [virtual]

The virtual method shall return the default timeout of this Device.

The default implementation returns the default operation timout of this Device in milliseconds set by the
constructor or by setDefaultTimeout().

7.1.4.13 virtual void stm::Device::setDefaultTimeout (int defaultTimeout = Forever)
[virtual]

The virtual method shall set the default operation timeout in milliseconds of this Device to defaultTimeout.

The default implementation sets the default timeout of this Device to defaultTimeout which defaults to
infinite.

7.1.4.14 virtual const Descriptor& stm::Device::descr () const [virtual]

Return the Device::Descriptor of this Device.

Returns:

An invalid Device::Descriptor, if this Device does not represent a device.
A valid Device::Descriptor of this Device represents a device.

Note:

It is not necessary that this UsbDevice is open.

See also:

setDescr().

7.1.4.15 virtual void stm::Device::setDescr (const Descriptor & descr) [pure virtual]

Set the Device::Descriptor of this Device to descr.

Parameters:

← descr A valid Device::Descriptor of the device to be represented by this Device object or an invalid
Device::Descriptor.

Effects:

If this Device is open, it is closed. Then descr is defined for it. If descr is valid, this Device is ready to
be opened, else it does not represent a device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 16

See also:

descr(), isOpen(), close(), open().

Implemented in stm::UsbDevice.

7.1.4.16 virtual bool stm::Device::canRead () const [virtual]

Return the read capability of this Device.

Returns:

false.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device cannot be
successfully opended in open mode Device::ReadAccess.
It is not necessary that this Device is open.

See also:

canWrite(), canControl(), canSeek(), open().

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.17 virtual bool stm::Device::canWrite () const [virtual]

Return the write capability of this Device.

Returns:

false.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device cannot be
successfully opended in open mode Device::WriteAccess.
It is not necessary that this Device is open.

See also:

canRead(), canControl(), canSeek(), open().

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.18 virtual bool stm::Device::canControl () const [virtual]

Return the control capability of this Device.

Returns:

false.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device does not
support the method control().
It is not necessary that this Device is open.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 17

See also:

canRead(), canWrite(), canSeek(), control().

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.19 virtual bool stm::Device::canSeek () const [virtual]

Return the seek capability of this Device.

Returns:

false.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device does not
support the methods size(), pos(), seek () and reset().
It is not necessary that this Device is open.

See also:

canRead(), canWrite(), canControl(), size(), pos(), seek(), reset ().

7.1.4.20 virtual int stm::Device::error () const [virtual]

Return the error state of this Device.

Returns:

The error state of this Device as one of the enumerators of Device::ErrorState.

Note:

It is not necessary that this Device is open.

See also:

setError(), clearError(), errorString(), augmentErrorString().

Reimplemented in stm::W32Device.

7.1.4.21 virtual void stm::Device::setError (int error, const std::string & msg = std::string())
const [virtual]

Set the error state and error string of this Device according to error and msg.

Parameters:

← error Error state as one of the enumerators of Device::ErrorState optionally ored with one ore more
of the enumerators of Device::ErrorFlags.

← msg Error string.

Effects:

If the error state part of error is one of the enumerators of Device::ErrorState, the error state of this
Device is set to that state and its error string to msg, else to Device::UnknownError. If the error flag
Device::SystemError is set in error, the error string is augmented by a system error description, if
available.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 18

Note:

Despite of being const, the method can change the error state and error string.
It is not necessary that this Device is open.

See also:

error(), clearError(), errorString(), augmentErrorString().

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.22 virtual void stm::Device::clearError () const [virtual]

Clear the error state and error string of this Device.

Effects:

The error state and error string of this Device are cleared, that means set to Device::NoError and the
empty string.

Note:

Despite of being const, the method can change the error state and error string.
It is not necessary that this Device is open.

See also:

error(), setError(), errorString(), augmentErrorString().

Reimplemented in stm::W32Device.

7.1.4.23 virtual std::string stm::Device::errorString (bool msgOnly = false) const [virtual]

Return the error string of this Device.

Parameters:

← msgOnly If true, return only error message, else precede it by a verbal description of the error state.

Returns:

A non empty string describing the error state of this Device, if that error state is not Device::NoError.
The empty string, if the error state of this Device is Device::NoError.

Note:

It is not necessary that this Device is open.

See also:

error(), setError(), clearError(), augmentErrorString().

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 19

7.1.4.24 virtual void stm::Device::augmentErrorString (const std::string & prefix, const std::string
& suffix = std::string()) const [virtual]

Augment the error string of this device.

Parameters:

← prefix Error string prefix.

← suffix Error string suffix.

Effects:

If the error state of this Device is not Device::NoError and at least one of prefix or suffix is not empty,
the current error string is augmented accordingly.

Note:

Despite of being const, the method can change the error string.
It is not necessary that this Device is open.

See also:

error(), setError(), clearError(), errorString().

7.1.4.25 virtual bool stm::Device::isOpen () const [virtual]

The virtual method shall return true, if this Device is open, else false.

The default implementation returns true, if this Device is open, that is if its open mode is not the De-
vice::OpenMode enumerator Device::NoAccess, else false.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.26 virtual unsigned int stm::Device::openMode () const [virtual]

The virtual method shall return the open mode of this Device.

The default implementation returns the open mode of this Device as one of the enumerators of De-
vice::OpenMode.

7.1.4.27 virtual bool stm::Device::open (unsigned int openMode = ReadWriteAccess)
[virtual]

The virtual method shall open this Device in openMode, if possible and return true on success, else false.

The default implementation sets the error state of this Device to the Device::ErrorState enumerator De-
vice::OpenError and returns false, if isOpen() does not return false or if openMode is not compatible with
the results of canRead() and/or canWrite(). Else the method sets the open mode of this Device to openMode
and returns true.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.28 virtual bool stm::Device::close () [virtual]

The virtual method shall close this Device, if possible and return true on success, else false.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.1 stm::Device Class Reference 20

The default implementation sets the error state of this Device to the Device::ErrorState enumerator De-
vice::CloseError and returns false, if isOpen() returns false. Else the method sets the open mode of this
Device to the Device::OpenMode enumerator Device::NoAccess and returns true.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.29 virtual int64_t stm::Device::read (void ∗ data, int64_t maxLen, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

The virtual method shall read maximal maxLen bytes from this Device and store them in the buffer pointed
to by data.

On error the method shall return -1, else the number of bytes actually read. The default implementation
sets the error state of this Device to Device::ErrorState enumerator Device::ReadError and returns -1, if
the result of openMode() does not contain the Device::OpenMode enumerator Device::ReadAccess or if
maxLen is negative or data is the NULL pointer unless maxLen is also 0. Else the method returns maxLen.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.30 virtual int64_t stm::Device::write (const void ∗ data, int64_t len, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

The virtual method shall write len bytes from the buffer pointed to by data to this Device.

On error the method shall return -1, else the number of bytes actually written. The default implementation
sets the error state of this Device to the Device::ErrorState enumerator Device::WriteError and returns -1,
if the result of openMode() does not contain the Device::OpenMode enumerator Device::WriteAccess or if
len is negative or data is the NULL pointer unless len is also 0. Else the method returns len.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.31 virtual int64_t stm::Device::control (unsigned int request, const void ∗ inData, int64_t
inLen, void ∗ outData, int64_t maxOutLen, int timeout = DefaultTimeout, unsigned int flags =
NoFlags) const [virtual]

The virtual method shall perform the control operation specified by request for this Device with input data
of length inLen pointed to by inData producing output data of maximal length maxOutLen in the buffer
pointed to by outData.

On error the method shall return -1, else the number of bytes produced in outData. The default imple-
mentation sets the error state of this Device to the Device::ErrorState enumerator Device::ControlError and
returns -1, if canControl() returns false, or if inLen is negative or inData is NULL unless inLen is also 0, or
if outLen is negative or outData is NULL unless maxOutLen is also 0. Else the method returns maxOutLen.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.1.4.32 virtual int64_t stm::Device::size () const [virtual]

The virtual method shall return the size of this Device, if it is an opened random access device, else -1.

The default implementation sets the error state of this Device to the Device::ErrorState enumerator De-
vice::SeekError and returns -1, if canSeek() or isOpen() return false. Else the method returns 0.

7.1.4.33 virtual int64_t stm::Device::pos () const [virtual]

The virtual method shall return the access position of this Device, if it is an opened random access device,
else -1.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.2 stm::Device::Descriptor Struct Reference 21

The default implementation sets the error state of this Device to the Device::ErrorState enumerator De-
vice::SeekError and returns -1, if canSeek() or isOpen() return false. Else the method returns 0.

7.1.4.34 virtual bool stm::Device::seek (int64_t pos) [virtual]

The virtual method shall set the access position of this Device to pos and return true on success, if it is an
opened random access device, else it shall return false.

The default implementation sets the error state of this Device to the Device::ErrorState enumerator De-
vice::SeekError and returns false, if canSeek() or isOpen() return false, or if pos is negative. Else the
method returns true.

7.1.4.35 virtual bool stm::Device::reset () [virtual]

The virtual method shall set the access position of this Device to 0 and return true on success, if it is an
opened random access device, else it shall return false.

The default implementation returns seek(0).

7.1.4.36 virtual std::ostream& stm::Device::describe (std::ostream & os, unsigned int flags =
DefaultProperties) const [virtual]

Insert a description of this Device into os.

The method shall insert a verbal description of this Device into the output stream os and return os. Format
and extent of the description shall be controlled by the flags parameter according to the bitwise ored enu-
merators of Device::DescribeFlags. The default implementation handles the device properties device type
and device Uuid for DefaultProperties and additionally the driver version property for VerboseProperties
or AllProperties.

Reimplemented in stm::UsbDevice, and stm::W32Device.

7.2 stm::Device::Descriptor Struct Reference

7.2.1 Detailed Description

Objects of type Device::Descriptor describe system dependent aspects of a Device as a pair of a void pointer
and a void function pointer.

If a Device::Descriptor object’s first pointer is NULL the descriptor is called invalid else valid.

Definition at line 502 of file device.hpp.

Public Member Functions

• Descriptor (void ∗d=NULL, void(∗f)()=NULL)
Constructs a Device::Descriptor object called invalid, if d is NULL.

• operator const void ∗ () const
Returns the first pointer of the Descriptor.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.3 stm::Device::Version Struct Reference 22

7.2.2 Constructor & Destructor Documentation

7.2.2.1 stm::Device::Descriptor::Descriptor (void ∗ d = NULL, void(∗)() f = NULL)

Constructs a Device::Descriptor object called invalid, if d is NULL.

7.2.3 Member Function Documentation

7.2.3.1 stm::Device::Descriptor::operator const void ∗ () const

Returns the first pointer of the Descriptor.

7.3 stm::Device::Version Struct Reference

7.3.1 Detailed Description

Device driver version.

Definition at line 922 of file device.hpp.

Public Types

• enum Parts {

Major = 3,

Minor = 2,

Micro = 1,

Nano = 0 }
Version part names.

Public Member Functions

• Version ()
Construct the null Version object with all part words cleared.

• Version (unsigned short major, unsigned minor, unsigned micro=0, unsigned nano=0)
Construct the Version object with all parts major, minor, micro and nano.

• Version (const Version &other)
Copy constructor.

• Version & operator= (const Version &other)
Assignment operator.

• std::string string () const
Return the string representation of this Version.

• bool isNull () const
Returns true, if this Version is null.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.3 stm::Device::Version Struct Reference 23

• bool operator== (const Version &other) const
Equality comparison operator.

• bool operator!= (const Version &other) const
Unequality comparison operator.

• bool operator< (const Version &other) const
Less than comparison operator.

• bool operator> (const Version &other) const
Greater than comparison operator.

• bool operator<= (const Version &other) const
Less or equal comparison operator.

• bool operator>= (const Version &other) const
Greater or equal comparison operator.

Public Attributes

• unsigned short part [4]
Word array of version parts.

7.3.2 Member Enumeration Documentation

7.3.2.1 enum stm::Device::Version::Parts

Version part names.

They serve as indexes of the part array.

Enumerator:

Major Major version part.

Minor Minor version part.

Micro Micro version part.

Nano Nano version part.

Definition at line 926 of file device.hpp.

7.3.3 Constructor & Destructor Documentation

7.3.3.1 stm::Device::Version::Version ()

Construct the null Version object with all part words cleared.

7.3.3.2 stm::Device::Version::Version (unsigned short major, unsigned minor, unsigned micro = 0,
unsigned nano = 0)

Construct the Version object with all parts major, minor, micro and nano.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.3 stm::Device::Version Struct Reference 24

7.3.3.3 stm::Device::Version::Version (const Version & other)

Copy constructor.

7.3.4 Member Function Documentation

7.3.4.1 Version& stm::Device::Version::operator= (const Version & other)

Assignment operator.

7.3.4.2 std::string stm::Device::Version::string () const

Return the string representation of this Version.

7.3.4.3 bool stm::Device::Version::isNull () const

Returns true, if this Version is null.

That means, if all part words are cleared.

7.3.4.4 bool stm::Device::Version::operator== (const Version & other) const

Equality comparison operator.

7.3.4.5 bool stm::Device::Version::operator!= (const Version & other) const

Unequality comparison operator.

7.3.4.6 bool stm::Device::Version::operator< (const Version & other) const

Less than comparison operator.

7.3.4.7 bool stm::Device::Version::operator> (const Version & other) const

Greater than comparison operator.

7.3.4.8 bool stm::Device::Version::operator<= (const Version & other) const

Less or equal comparison operator.

7.3.4.9 bool stm::Device::Version::operator>= (const Version & other) const

Greater or equal comparison operator.

7.3.5 Member Data Documentation

7.3.5.1 unsigned short stm::Device::Version::part[4]

Word array of version parts.

Its elements store the version parts indexed by the enumerators of Parts.

Definition at line 976 of file device.hpp.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.4 stm::UsbCtrl Struct Reference 25

7.4 stm::UsbCtrl Struct Reference

7.4.1 Detailed Description

Type specifying the request type encoding the transfer direction, the value and the index of a USB control
request.

Definition at line 162 of file usbdevice.hpp.

7.5 stm::UsbDevice Class Reference

Inheritance diagram for stm::UsbDevice:

stm::UsbDevice

stm::Device

Collaboration diagram for stm::UsbDevice:

stm::UsbDevice

stm::Device

7.5.1 Detailed Description

Class defining the C++ API for a libusb controlled USB device inheriting the generic stm::Device C++
API.

This class can be instantiated or be used as base class of a special libusb controlled USB device class which
may reimplement the interface of stm::UsbDevice as well as that of the abstract base class stm::Device.

Definition at line 199 of file usbdevice.hpp.

Public Types

• enum DescribeFlags {

DeviceReleaseNumber = DriverVersion << 1,

DeviceBusNumber = DeviceReleaseNumber << 1,

DeviceManufacturer = DeviceBusNumber << 1,

DeviceProduct = DeviceManufacturer << 1,

DeviceSerialNumber = DeviceProduct << 1,

DeviceConfigurations = DeviceSerialNumber << 1,

DeviceInterfaces = DeviceConfigurations << 1,

DeviceAltSettings = DeviceInterfaces << 1,

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 26

DeviceEndpoints = DeviceAltSettings << 1,

DeviceChildren = DeviceEndpoints << 1 }
Describe flags (bitwise orable).

Public Member Functions

• UsbDevice (int defaultTimeout=Forever, const Descriptor &descr=Descriptor())
Constructor of a UsbDevice object representing a libusb controlled USB device described by descr.

• virtual ∼UsbDevice ()
Destructor.

• virtual bool canRead () const
Return the read capability of this UsbDevice.

• virtual bool canWrite () const
Return the write capability of this UsbDevice.

• virtual bool canControl () const
Return the control capability of this UsbDevice.

• virtual void setError (int error, const std::string &msg=std::string()) const
Set the error state and error string of this UsbDevice according to error and msg.

• virtual void setDescr (const Descriptor &descr)
Set the Device::Descriptor of this UsbDevice to descr.

• UsbPipe pipe () const
Return a copy of the UsbPipe object configured for this UsbDevice.

• UsbPipe::Type pipeType () const
Return the type of the UsbPipe object configured for this UsbDevice as an enumerator of the enumeration
UsbPipe::Type.

• UsbPipe::Type setPipe (UsbPipe pipe)
Set the UsbPipe object configured for this UsbDevice to a copy of pipe and return its type.

• virtual bool isOpen () const
Determine, if this UsbDevice is open.

• virtual bool open (unsigned int openMode)
Open this UsbDevice in openMode.

• virtual bool close ()
Close this UsbDevice.

• virtual int64_t read (void ∗data, int64_t maxLen, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 27

Read maxLen bytes from the currently confiured USB pipe of this UsbDevice into the data buffer.

• virtual int64_t readPipe (UsbPipe pipe, void ∗data, int64_t maxLen, int timeout=DefaultTimeout,
unsigned int flags=NoFlags)

Atomically set the UsbPipe object configured for this UsbDevice to a copy of pipe and read maxLen bytes
from that pipe into the data buffer.

• virtual int64_t write (const void ∗data, int64_t len, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

Write len bytes from the data buffer to the currently configured USB pipe of this UsbDevice.

• virtual int64_t writePipe (UsbPipe pipe, const void ∗data, int64_t len, int timeout=DefaultTimeout,
unsigned int flags=NoFlags)

Atomically set the UsbPipe object configured for this UsbDevice to a copy of pipe and write len bytes from
the data buffer to that pipe.

• virtual int64_t control (unsigned int request, const void ∗ctrl, int64_t ctrlLen, void ∗data, int64_t
dataLen, int timeout=DefaultTimeout, unsigned int flags=NoFlags) const

Perform the control operation request over the default control pipe of this UsbDevice.

• virtual std::ostream & describe (std::ostream &os, unsigned int flags=DefaultProperties) const
Insert a description of this UsbDevice into os.

• bool isA (const InterfaceClass &interfaceClass) const
The method returns true, if this UsbDevice is a device supporting the libusb controlled USB device interface
class described by interfaceClass.

• template<class ForwardIterator>
bool isA (ForwardIterator beginInterfaceClass, ForwardIterator endInterfaceClass) const

The method template returns true, if this UsbDevice is a device supporting one of the the libusb controlled
USB device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

Static Public Member Functions

• static size_t enumerate (std::vector< Descriptor > &descriptors, const InterfaceClass &interface-
Class, bool append=false, bool quick=false)

Enumerate all Device::Descriptor objects describing libusb controlled USB devices supporting the libusb
controlled USB device interface class described by interfaceClass.

• template<class ForwardIterator>
static size_t enumerate (std::vector< Descriptor > &descriptors, ForwardIterator beginInterface-
Class, ForwardIterator endInterfaceClass, bool append=false)

Enumerate all Device::Descriptor objects describing libusb controlled USB devices supporting one of the
the libusb controlled USB device interface classes whose description is contained in the half open interval
[∗beginInterfaceClass, ∗endInterfaceClass).

• static size_t enumerateAll (std::vector< Descriptor > &descriptors)
Enumerate all Device::Descriptor objects describing libusb controlled USB devices.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 28

Classes

• struct InterfaceClass
Type describing a libusb controlled USB device interface class.

7.5.2 Member Enumeration Documentation

7.5.2.1 enum stm::UsbDevice::DescribeFlags

Describe flags (bitwise orable).

The enumerators of UsbDevice::DescribeFlags augment the Device::DescribeFlags further specifying the
extent produced by describe().

Enumerator:

DeviceReleaseNumber If set, the device release number property is included, else not.

DeviceBusNumber If set, the device bus number property is included, else not.

DeviceManufacturer If set, the device manufacturer property is included, else not.

DeviceProduct If set, the device product property is included, else not.

DeviceSerialNumber If set, the device serial number property is included, else not.

DeviceConfigurations If set, the device configurations property is included, else not.

DeviceInterfaces If set and property names are configured, the device interfaces property is included,
else not.

DeviceAltSettings If set and property names are configured, the device alternate settings property is
included, else not.

DeviceEndpoints If set and property names are configured, the device endpoints property is included,
else not.

DeviceChildren If set, the device children property is included, else not.

Reimplemented from stm::Device.

Definition at line 208 of file usbdevice.hpp.

7.5.3 Constructor & Destructor Documentation

7.5.3.1 stm::UsbDevice::UsbDevice (int defaultTimeout = Forever, const Descriptor & descr =
Descriptor())

Constructor of a UsbDevice object representing a libusb controlled USB device described by descr.

Parameters:

← defaultTimeout Timeout in milliseconds used by default for all operations of this UsbDevice.

← descr A valid Device::Descriptor for the libusb controlled USB device to be represented by the
UsbDevice object to be constructed or an invalid Device::Descriptor. A valid Device::Descriptor
is typically yielded by one of the static methods enumerate() or enumerateAll().

Effects:

Constructs a UsbDevice object with the Device::Descriptor descr defined for it. If descr is valid, the
constructed UsbDevice is ready to be opened.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 29

See also:

descr(), open(), enumerate(), enumerateAll().

7.5.3.2 virtual stm::UsbDevice::∼UsbDevice () [virtual]

Destructor.

Effects:

If this UsbDevice is open, it is closed first.

See also:

isOpen(), close().

7.5.4 Member Function Documentation

7.5.4.1 virtual bool stm::UsbDevice::canRead () const [virtual]

Return the read capability of this UsbDevice.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device can be
successfully opended in open mode Device::ReadAccess.
It is not necessary that this UsbDevice is open.

See also:

canWrite(), canControl(), canSeek(), open().

Reimplemented from stm::Device.

7.5.4.2 virtual bool stm::UsbDevice::canWrite () const [virtual]

Return the write capability of this UsbDevice.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device can be
successfully opended in open mode Device::WriteAccess.
It is not necessary that this UsbDevice is open.

See also:

canRead(), canControl(), canSeek(), open().

Reimplemented from stm::Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 30

7.5.4.3 virtual bool stm::UsbDevice::canControl () const [virtual]

Return the control capability of this UsbDevice.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device does support
the method control().
It is not necessary that this UsbDevice is open.

See also:

canRead(), canWrite(), canSeek(), control().

Reimplemented from stm::Device.

7.5.4.4 virtual void stm::UsbDevice::setError (int error, const std::string & msg =
std::string()) const [virtual]

Set the error state and error string of this UsbDevice according to error and msg.

Parameters:

← error Error state as one of the enumerators of Device::ErrorState optionally ored with one ore more
of the enumerators of Device::ErrorFlags.

← msg Error string.

Effects:

If the error state part of error is one of the enumerators of Device::ErrorState, the error state of this
UsbDevice is set to that state and its error string to msg, else to Device::UnknownError. If the error
flag Device::SystemError is set in error, the error string is augmented by a system error description, if
available.

Note:

Despite of being const, the method can change the error state and error string.
It is not necessary that this UsbDevice is open.

See also:

error(), clearError(), errorString(), augmentErrorString().

Reimplemented from stm::Device.

7.5.4.5 virtual void stm::UsbDevice::setDescr (const Descriptor & descr) [virtual]

Set the Device::Descriptor of this UsbDevice to descr.

Parameters:

← descr A valid Device::Descriptor of the libusb controlled USB device to be represented by this
UsbDevice or an invalid Device::Descriptor. A valid descriptor is typically yielded by one of the
static methods enumerate() or enumerateAll().

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 31

Effects:

If this UsbDevice is open, it is closed. Then descr is defined for it. If descr is valid, this UsbDevice is
ready to be opened, else it does not represent a libusb controlled USB device.

See also:

descr(), isOpen(), close(), open(), enumerate(), enumerateAll().

Implements stm::Device.

7.5.4.6 UsbPipe stm::UsbDevice::pipe () const

Return a copy of the UsbPipe object configured for this UsbDevice.

Returns:

an invalid UsbPipe object, if this UsbDevice does not represent a libusb controlled USB device.
a copy of the UsbPipe object configured for the libusb controlled USB device represented by this
UsbDevice.

Note:

It is not necessary that this UsbDevice is open.

See also:

pipeType(), setPipe(), isOpen().

7.5.4.7 UsbPipe::Type stm::UsbDevice::pipeType () const

Return the type of the UsbPipe object configured for this UsbDevice as an enumerator of the enumeration
UsbPipe::Type.

Returns:

UsbPipe::Invalid, if this UsbDevice does not represent a libusb controlled USB device, or if its config-
ured pipe is invalid.
UsbPipe::Bulk or UsbPipe::Interrupt, if this UsbDevice represents a libusb controlled USB device with
a pipe configured for bulk or interrupt data transfer.

Note:

It is not necessary that this UsbDevice is open.

See also:

pipe(), setPipe(), isOpen().

7.5.4.8 UsbPipe::Type stm::UsbDevice::setPipe (UsbPipe pipe)

Set the UsbPipe object configured for this UsbDevice to a copy of pipe and return its type.

Parameters:

← pipe A UsbPipe object a copy of which is to be configured for the libusb controlled USB device
represented by this UsbDevice.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 32

Returns:

The type UsbPipe::Bulk or UsbPipe::Interrupt, if a copy of pipe can be configured for this UsbDevice,
else UsbPipe::Invalid, in which case the UsbPipe object configured for this UsbDevice stays
unchanged.

Note:

It is not necessary that this UsbDevice is open.

See also:

pipe(), pipeType(), isOpen().

7.5.4.9 virtual bool stm::UsbDevice::isOpen () const [virtual]

Determine, if this UsbDevice is open.

Returns:

true, if this UsbDevice is open, that is if its open mode is not the Device::OpenMode enumerator
Device::NoAccess.
false, if this UsbDevice is not open, that is if its open mode is the Device::OpenMode enumerator
Device::NoAccess.

See also:

open(), close().

Reimplemented from stm::Device.

7.5.4.10 virtual bool stm::UsbDevice::open (unsigned int openMode) [virtual]

Open this UsbDevice in openMode.

Parameters:

← openMode Open mode to be set.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::OpenError, if openMode is the Device::OpenMode enumerator Device::NoAccess, if isOpen()
does not return false or if the libusb controlled USB device represented by this UsbDevice cannot be
opened conforming to openMode. Else the method sets the open mode of this UsbDevice to openMode.

Returns:

true, if this UsbDevice could be opened in openMode.
false, if this UsbDevice could not be opened in openMode. Then the error state of this UsbDevice
is set to Device::OpenError.

See also:

isOpen(), close(), error ().

Reimplemented from stm::Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 33

7.5.4.11 virtual bool stm::UsbDevice::close () [virtual]

Close this UsbDevice.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::CloseError, if isOpen() returns false or if the libusb controlled USB device represented by this
UsbDevice cannot be closed successfully. Else the method sets the open mode of this UsbDevice to
the Device::OpenMode enumerator Device::NoAccess.

Returns:

true, if this UsbDevice could be closed successfully.
false, if this UsbDevice could not be closed successfully. Then the error state of this UsbDevice is
set to Device::CloseError.

See also:

isOpen(), open(), error ().

Reimplemented from stm::Device.

7.5.4.12 virtual int64_t stm::UsbDevice::read (void ∗ data, int64_t maxLen, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Read maxLen bytes from the currently confiured USB pipe of this UsbDevice into the data buffer.

Parameters:

→ data Buffer for the data to be read.

← maxLen Maximal number of bytes to be read.

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this UsbDevice is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::ReadError, if the result of openMode() does not contain the Device::OpenMode enumerator
Device::ReadAccess, or if maxLen is negative or data is the NULL pointer unless maxLen is also,
0 or if the read operation described below fails. During the read operation maximal maxLen bytes
from the libusb controlled USB device represented by this UsbDevice are read through the USB pipe
currently configured and are stored in the buffer pointed to by data.

Returns:

The number of bytes actually read, if the read operation was successful.
-1, if the read operation was not successful. Then the error state of this UsbDevice is set to De-
vice::ReadError.

Note:

Be aware that in multithreaded applications configuring the USB pipe to be used and the reading from
the pipe must occur atomically. To ensure this, better use readPipe() in those situations.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 34

See also:

write(), control(), openMode(), error (), defaultTimeout(), pipe(), setPipe(), readPipe().

Reimplemented from stm::Device.

7.5.4.13 virtual int64_t stm::UsbDevice::readPipe (UsbPipe pipe, void ∗ data, int64_t maxLen, int
timeout = DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Atomically set the UsbPipe object configured for this UsbDevice to a copy of pipe and read maxLen bytes
from that pipe into the data buffer.

Parameters:

← pipe A UsbPipe object a copy of which is to be configured for the libusb controlled USB device
represented by this UsbDevice.

→ data Buffer for the data to be read.

← maxLen Maximal number of bytes to be read.

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this UsbDevice is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::ReadError, if it cannot set the pipe successfully, if the result of openMode() does not contain the
Device::OpenMode enumerator Device::ReadAccess, or if maxLen is negative or data is the NULL
pointer unless maxLen is also, 0 or if the read operation described below fails. During the read opera-
tion maximal maxLen bytes from the libusb controlled USB device represented by this UsbDevice are
read through pipe and are stored in the buffer pointed to by data.

Returns:

The number of bytes actually read, if the read operation was successful.
-1, if the read operation was not successful. Then the error state of this UsbDevice is set to De-
vice::ReadError.

Note:

The timeout only applies to the read operation not to the setting of the pipe.

See also:

write(), control(), openMode(), error (), defaultTimeout(), pipe(), setPipe(), read().

7.5.4.14 virtual int64_t stm::UsbDevice::write (const void ∗ data, int64_t len, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Write len bytes from the data buffer to the currently configured USB pipe of this UsbDevice.

Parameters:

← data Buffer containing the data to be written.

← len Number of bytes to be written.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 35

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this UsbDevice is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::WriteError, if the result of openMode() does not contain the Device::OpenMode enumerator
Device::WriteAccess, or if len is negative or data is the NULL pointer unless len is also 0, or if the
write operation described below fails. During the write operation len bytes from the buffer pointed
to by data are written through the USB pipe currently configured to the libusb controlled USB device
represented by this UsbDevice.

Returns:

len, if the write operation was successful.
-1, if the write operation was not successful. Then the error state of this UsbDevice is set to De-
vice::WriteError.

Note:

Be aware that in multithreaded applications configuring the USB pipe to be used and the writing to the
pipe must occur atomically. To ensure this, better use writePipe() in those situations.

See also:

read(), control(), openMode(), error (), defaultTimeout(), pipe(), setPipe(), writePipe().

Reimplemented from stm::Device.

7.5.4.15 virtual int64_t stm::UsbDevice::writePipe (UsbPipe pipe, const void ∗ data, int64_t len,
int timeout = DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Atomically set the UsbPipe object configured for this UsbDevice to a copy of pipe and write len bytes from
the data buffer to that pipe.

Parameters:

← pipe A UsbPipe object a copy of which is to be configured for the libusb controlled USB device
represented by this UsbDevice.

← data Buffer containing the data to be written.

← len Number of bytes to be written.

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this UsbDevice is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this UsbDevice to the Device::ErrorState enumerator De-
vice::WriteError, if it cannot set the pipe successfully, if the result of openMode() does not contain
the Device::OpenMode enumerator Device::WriteAccess, or if len is negative or data is the NULL
pointer unless len is also 0, or if the write operation described below fails. During the write operation
len bytes from the buffer pointed to by data are written through pipe to the libusb controlled USB
device represented by this UsbDevice.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 36

Returns:

len, if the write operation was successful.
-1, if the write operation was not successful. Then the error state of this UsbDevice is set to De-
vice::WriteError.

Note:

The timeout only applies to the write operation not to the setting of the pipe.

See also:

read(), control(), openMode(), error (), defaultTimeout(), pipe(), setPipe(), write().

7.5.4.16 virtual int64_t stm::UsbDevice::control (unsigned int request, const void ∗ ctrl, int64_-
t ctrlLen, void ∗ data, int64_t dataLen, int timeout = DefaultTimeout, unsigned int flags =
NoFlags) const [virtual]

Perform the control operation request over the default control pipe of this UsbDevice.

Parameters:

← request Specifies the particular control operation to be performed.

← ctrl Pointer to a UsbCtrl object specifying the request type (in which the transfer direction is en-
coded), the value and the index of the request.

← ctrlLen sizeof(UsbCtrl).

↔ data Buffer for the input or output data.

← dataLen Byte length of the data buffer.

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this UsbDevice is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method performs the control operation characterized by request for the libusb controlled USB
device represented by this UsbDevice using its default control pipe. The parameter ctrl shall be the
address of a UsbCtrl object specifying the request type encoding the transfer direction, the value and
the index of the request. The parameter ctrlLen shall be sizeof(UsbCtrl). If any data transfer is required,
data shall not be NULL and point to a buffer of size dataLen.

Returns:

The number of bytes transferred to or from data, if the operation was successful. This is 0 in the case
of an accepted timeout.
-1, if the operation was not successful. Then the error state of this UsbDevice is set to the De-
vice::ErrorState enumerator Device::ControlError.

See also:

write(), read(), openMode(), error (), defaultTimeout().

Reimplemented from stm::Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.5 stm::UsbDevice Class Reference 37

7.5.4.17 virtual std::ostream& stm::UsbDevice::describe (std::ostream & os, unsigned int flags =
DefaultProperties) const [virtual]

Insert a description of this UsbDevice into os.

Parameters:

← os The output stream to insert the description.

← flags Description flags.

Effects:

The method inserts a verbal description of this UsbDevice into the output stream os. Format and
extent of the description is controlled by the flags parameter according to the bitwise ored enumerators
of Device::DescribeFlags and UsbDevice::DescribeFlags.

Returns:

The output stream os.

Note:

This UsbDevice need not be open.

Reimplemented from stm::Device.

7.5.4.18 bool stm::UsbDevice::isA (const InterfaceClass & interfaceClass) const

The method returns true, if this UsbDevice is a device supporting the libusb controlled USB device interface
class described by interfaceClass.

That means it returns true, if the Device::Descriptor of this UsbDevice describes a libusb controlled USB
device supporting the libusb controlled USB device interface class described by interfaceClass, else false.

7.5.4.19 template<class ForwardIterator> bool stm::UsbDevice::isA (ForwardIterator beginInter-
faceClass, ForwardIterator endInterfaceClass) const

The method template returns true, if this UsbDevice is a device supporting one of the the libusb controlled
USB device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

That means it returns true, if the Device::Descriptor of this UsbDevice describes a libusb controlled USB
device supporting one of the libusb controlled USB device interface classes described by that interval, else
false.

7.5.4.20 static size_t stm::UsbDevice::enumerate (std::vector< Descriptor > & descriptors, const
InterfaceClass & interfaceClass, bool append = false, bool quick = false) [static]

Enumerate all Device::Descriptor objects describing libusb controlled USB devices supporting the libusb
controlled USB device interface class described by interfaceClass.

The static method clears the vector descriptors, scans the system for all libusb controlled USB devices
supporting the libusb controlled USB device interface class described by interfaceClass, stores the De-
vice::Descriptor objects describing those devices in the vector descriptors and returns the size of that vector.
If quick is true, the system is not scanned for new hardware.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.6 stm::UsbDevice::InterfaceClass Struct Reference 38

7.5.4.21 template<class ForwardIterator> static size_t stm::UsbDevice::enumerate (std::vector<
Descriptor > & descriptors, ForwardIterator beginInterfaceClass, ForwardIterator endInterface-
Class, bool append = false) [static]

Enumerate all Device::Descriptor objects describing libusb controlled USB devices supporting one of the
the libusb controlled USB device interface classes whose description is contained in the half open interval
[∗beginInterfaceClass, ∗endInterfaceClass).

The static method template clears the vector descriptors, scans the system for all libusb controlled USB
devices supporting one of the libusb controlled USB device interface classes described by that interval,
stores the Device::Descriptor objects describing those devices in the vector descriptors and returns the size
of that vector.

7.5.4.22 static size_t stm::UsbDevice::enumerateAll (std::vector< Descriptor > & descriptors)
[static]

Enumerate all Device::Descriptor objects describing libusb controlled USB devices.

The static method template clears the vector descriptors, scans the system for all libusb controlled USB
devices, stores the Device::Descriptor objects describing those devices in the vector descriptors and returns
the size of that vector.

7.6 stm::UsbDevice::InterfaceClass Struct Reference

7.6.1 Detailed Description

Type describing a libusb controlled USB device interface class.

Such a libusb controlled USB device interface class is characterized by its vendor and product IDs.

Definition at line 750 of file usbdevice.hpp.

Public Member Functions

• InterfaceClass (unsigned short vendorId=0, unsigned short productId=0)
Constructor yielding a UsbDevice::InterfaceClass object describing the libusb controlled USB device inter-
face class characterized by its vendor and product IDs.

7.6.2 Constructor & Destructor Documentation

7.6.2.1 stm::UsbDevice::InterfaceClass::InterfaceClass (unsigned short vendorId = 0, unsigned
short productId = 0)

Constructor yielding a UsbDevice::InterfaceClass object describing the libusb controlled USB device in-
terface class characterized by its vendor and product IDs.

7.7 stm::UsbPipe Struct Reference

7.7.1 Detailed Description

Type specifying the configuration, the interface, the alternate setting, and the endpoint of the USB pipe to
be used for a USB bulk or interrupt transfer.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.8 stm::Uuid Struct Reference 39

Definition at line 123 of file usbdevice.hpp.

7.8 stm::Uuid Struct Reference

Inheritance diagram for stm::Uuid:

stm::Uuid

stm::W32Device::InterfaceClass

7.8.1 Detailed Description

Universal unique identifier storing its fields in little endian format.

Definition at line 307 of file device.hpp.

Public Member Functions

• Uuid ()
Construct the null Uuid object with all octet bytes cleared.

• Uuid (const unsigned char array[Size])
Construct the Uuid object defined by the octet bytes array.

• Uuid (unsigned long l, unsigned short w1, unsigned short w2, unsigned char b1, unsigned char b2,
unsigned char b3, unsigned char b4, unsigned char b5, unsigned char b6, unsigned char b7, unsigned
char b8)

Construct an Uuid object from the components l, w1, w2, b1, b2, b3, b4, b5, b6, b7 and b8.

• Uuid (const Uuid &other)
Copy constructor.

• Uuid & operator= (const Uuid &other)
Assignment operator.

• std::string string () const
Return the string representation of this Uuid.

• bool isNull () const
Returns true, if this Uuid is null.

• bool operator== (const Uuid &other) const
Equality comparison operator.

• bool operator!= (const Uuid &other) const
Unequality comparison operator.

• bool operator< (const Uuid &other) const

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.8 stm::Uuid Struct Reference 40

Less than comparison operator.

• bool operator> (const Uuid &other) const
Greater than comparison operator.

• bool operator<= (const Uuid &other) const
Less or equal comparison operator.

• bool operator>= (const Uuid &other) const
Greater or equal comparison operator.

Public Attributes

• unsigned char octet [Size]
Structured byte array.

Static Public Attributes

• static const size_t Size = 16
Number of bytes of a Uuid object.

7.8.2 Constructor & Destructor Documentation

7.8.2.1 stm::Uuid::Uuid ()

Construct the null Uuid object with all octet bytes cleared.

7.8.2.2 stm::Uuid::Uuid (const unsigned char array[Size]) [explicit]

Construct the Uuid object defined by the octet bytes array.

7.8.2.3 stm::Uuid::Uuid (unsigned long l, unsigned short w1, unsigned short w2, unsigned char
b1, unsigned char b2, unsigned char b3, unsigned char b4, unsigned char b5, unsigned char b6,
unsigned char b7, unsigned char b8)

Construct an Uuid object from the components l, w1, w2, b1, b2, b3, b4, b5, b6, b7 and b8.

7.8.2.4 stm::Uuid::Uuid (const Uuid & other)

Copy constructor.

7.8.3 Member Function Documentation

7.8.3.1 Uuid& stm::Uuid::operator= (const Uuid & other)

Assignment operator.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.8 stm::Uuid Struct Reference 41

7.8.3.2 std::string stm::Uuid::string () const

Return the string representation of this Uuid.

7.8.3.3 bool stm::Uuid::isNull () const

Returns true, if this Uuid is null.

That means, if all octet bytes are cleared.

7.8.3.4 bool stm::Uuid::operator== (const Uuid & other) const

Equality comparison operator.

7.8.3.5 bool stm::Uuid::operator!= (const Uuid & other) const

Unequality comparison operator.

7.8.3.6 bool stm::Uuid::operator< (const Uuid & other) const

Less than comparison operator.

7.8.3.7 bool stm::Uuid::operator> (const Uuid & other) const

Greater than comparison operator.

7.8.3.8 bool stm::Uuid::operator<= (const Uuid & other) const

Less or equal comparison operator.

7.8.3.9 bool stm::Uuid::operator>= (const Uuid & other) const

Greater or equal comparison operator.

7.8.4 Member Data Documentation

7.8.4.1 const size_t stm::Uuid::Size = 16 [static]

Number of bytes of a Uuid object.

Definition at line 310 of file device.hpp.

7.8.4.2 unsigned char stm::Uuid::octet[Size]

Structured byte array.

Its fields are stored in little endian format. In the description below the layout of its hexadecimal bytes hh
is shown together with the corresponding octet array indexes.

{hh.hh.hh.hh-hh.hh-hh.hh-hh.hh-hh-hh-hh-hh-hh-hh}
3 2 1 0 5 4 7 6 8 9 a b c d e f

Definition at line 373 of file device.hpp.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 42

7.9 stm::W32Device Class Reference

Inheritance diagram for stm::W32Device:

stm::W32Device

stm::Device

Collaboration diagram for stm::W32Device:

stm::W32Device

stm::Device

7.9.1 Detailed Description

Class defining the C++ API for a Windows device inheriting the generic stm::Device C++ API.

This class can be instantiated or be used as base class of a special Windows device class which may
reimplement the interface of stm::W32Device as well as that of the abstract base class stm::Device.

Definition at line 128 of file w32device.hpp.

Public Types

• enum DescribeFlags {

DevicePath = DriverVersion << 1,

DeviceInstance = DevicePath << 1,

DeviceIfClass = DeviceInstance << 1 }
Describe flags (bitwise orable).

Public Member Functions

• W32Device (int defaultTimeout=Forever, const Descriptor &descr=Descriptor())
Constructor of a W32Device object representing a Windows device described by descr.

• virtual ∼W32Device ()
Destructor.

• virtual bool canRead () const
Return the read capability of this W32Device.

• virtual bool canWrite () const
Return the write capability of this W32Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 43

• virtual bool canControl () const
Return the control capability of this W32Device.

• virtual int error () const
Return the error state of this W32Device.

• virtual void setError (int error, const std::string &msg=std::string()) const
Set the error state and error string of this W32Device according to error and msg.

• virtual void clearError () const
Clear the error state and error string of this W32Device.

• virtual bool isOpen () const
Determine, if this W32Device is open.

• virtual bool open (unsigned int openMode)
Open this W32Device in openMode.

• virtual bool close ()
Close this W32Device.

• virtual int64_t read (void ∗data, int64_t maxLen, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

Read maxLen bytes from this W32Device into the data buffer.

• virtual int64_t write (const void ∗data, int64_t len, int timeout=DefaultTimeout, unsigned int
flags=NoFlags)

Write len bytes from the data buffer to this W32Device.

• virtual int64_t control (unsigned int request, const void ∗inData, int64_t inLen, void ∗outData,
int64_t maxOutLen, int timeout=DefaultTimeout, unsigned int flags=NoFlags) const

Perform the control operation request on this W32Device.

• virtual std::ostream & describe (std::ostream &os, unsigned int flags=DefaultProperties) const
Insert a description of this W32Device into os.

• bool isA (const InterfaceClass &interfaceClass) const
The method returns true, if this W32Device is a device supporting the Windows device interface class de-
scribed by interfaceClass.

• template<class ForwardIterator>
bool isA (ForwardIterator beginInterfaceClass, ForwardIterator endInterfaceClass) const

The method template returns true, if this W32Device is a device supporting one of the the Windows
device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 44

Static Public Member Functions

• static size_t enumerate (std::vector< Descriptor > &descriptors, const InterfaceClass &interface-
Class, bool append=false)

Enumerate all Device::Descriptor objects describing Windows devices supporting the Windows device in-
terface class described by interfaceClass.

• template<class ForwardIterator>
static size_t enumerate (std::vector< Descriptor > &descriptors, ForwardIterator beginInterface-
Class, ForwardIterator endInterfaceClass, bool append=false)

Enumerate all Device::Descriptor objects describing Windows devices supporting one of the the Windows
device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

Classes

• struct InterfaceClass
Type describing a Windows device interface class.

7.9.2 Member Enumeration Documentation

7.9.2.1 enum stm::W32Device::DescribeFlags

Describe flags (bitwise orable).

The enumerators of W32Device::DescribeFlags augment the Device::DescribeFlags further specifying the
extent produced by describe().

Enumerator:

DevicePath If set, the device path property is included, else not.

DeviceInstance If set, the device instance property is included, else not.

DeviceIfClass If set, the device interface class property is included, else not.

Reimplemented from stm::Device.

Definition at line 137 of file w32device.hpp.

7.9.3 Constructor & Destructor Documentation

7.9.3.1 stm::W32Device::W32Device (int defaultTimeout = Forever, const Descriptor & descr =
Descriptor())

Constructor of a W32Device object representing a Windows device described by descr.

Parameters:

← defaultTimeout Timeout in milliseconds used by default for all operations of this W32Device.

← descr A valid Device::Descriptor of the Windows device to be represented by the W32Device
object to be constructed or an invalid Device::Descriptor. A valid Device::Descriptor is typically
yielded by one of the static methods enumerate() or enumerateAll().

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 45

Effects:

Constructs a W32Device object with the Device::Descriptor descr defined for it. If descr is valid, the
constructed W32Device is ready to be opened.

See also:

descr(), open(), enumerate(), enumerateAll().

7.9.3.2 virtual stm::W32Device::∼W32Device () [virtual]

Destructor.

Effects:

If this W32Device is open, it is closed first.

See also:

isOpen(), close().

7.9.4 Member Function Documentation

7.9.4.1 virtual bool stm::W32Device::canRead () const [virtual]

Return the read capability of this W32Device.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device can be
successfully opended in open mode Device::ReadAccess.
It is not necessary that this W32Device is open.

See also:

canWrite(), canControl(), canSeek(), open().

Reimplemented from stm::Device.

7.9.4.2 virtual bool stm::W32Device::canWrite () const [virtual]

Return the write capability of this W32Device.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device can be
successfully opended in open mode Device::WriteAccess.
It is not necessary that this W32Device is open.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 46

See also:

canRead(), canControl(), canSeek(), open().

Reimplemented from stm::Device.

7.9.4.3 virtual bool stm::W32Device::canControl () const [virtual]

Return the control capability of this W32Device.

Returns:

true.

Note:

If this virtual method is not reimplemented by a derived class, this means that the device does support
the method control().
It is not necessary that this W32Device is open.

See also:

canRead(), canWrite(), canSeek(), control().

Reimplemented from stm::Device.

7.9.4.4 virtual int stm::W32Device::error () const [virtual]

Return the error state of this W32Device.

Effects:

If the error state of this W32Device is Device::NoError, the Windows last-error code is cleared.

Returns:

The error state of this W32Device as one of the enumerators of Device::ErrorState.

Note:

It is not necessary that this W32Device is open.

See also:

setError(), clearError(), errorString().

Reimplemented from stm::Device.

7.9.4.5 virtual void stm::W32Device::setError (int error, const std::string & msg =
std::string()) const [virtual]

Set the error state and error string of this W32Device according to error and msg.

Parameters:

← error Error state as one of the enumerators of Device::ErrorState optionally ored with one ore more
of the enumerators of Device::ErrorFlags.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 47

← msg Error string.

Effects:

If the error state part of error is one of the enumerators of Device::ErrorState, the error state of this
W32Device is set to that state and its error string to msg, else to Device::UnknownError. If the error
flag Device::SystemError is set in error, the error string is augmented by a system error description, if
available.

Note:

Despite of being const, the method can change the error state and error string.
It is not necessary that this W32Device is open.

See also:

error(), clearError(), errorString(), augmentErrorString().

Reimplemented from stm::Device.

7.9.4.6 virtual void stm::W32Device::clearError () const [virtual]

Clear the error state and error string of this W32Device.

Effects:

The error state and error string of this W32Device are cleared, that means set to Device::NoError and
the empty string. Moreover, the Windows last-error code is cleared.

Note:

Despite of being const, the method can change the error state and error string.
It is not necessary that this W32Device is open.

See also:

error(), setError(), errorString(), augmentErrorString().

Reimplemented from stm::Device.

7.9.4.7 virtual bool stm::W32Device::isOpen () const [virtual]

Determine, if this W32Device is open.

Returns:

true, if this W32Device is open, that is if its open mode is not the Device::OpenMode enumerator
Device::NoAccess.
false, if this W32Device is not open, that is if its open mode is the Device::OpenMode enumerator
Device::NoAccess.

See also:

open(), close().

Reimplemented from stm::Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 48

7.9.4.8 virtual bool stm::W32Device::open (unsigned int openMode) [virtual]

Open this W32Device in openMode.

Parameters:

← openMode Open mode to be set.

Effects:

The method sets the error state of this W32Device to the Device::ErrorState enumerator De-
vice::OpenError, if openMode is the Device::OpenMode enumerator Device::NoAccess, if isOpen()
does not return false or if the Windows device represented by this W32Device cannot be opened con-
forming to openMode. Else the method sets the open mode of this W32Device to openMode.

Returns:

true, if this W32Device could be opened in openMode.
false, if this W32Device could not be opened in openMode. Then the error state of this W32Device
is set to Device::OpenError.

See also:

isOpen(), close(), error ().

Reimplemented from stm::Device.

7.9.4.9 virtual bool stm::W32Device::close () [virtual]

Close this W32Device.

Effects:

The method sets the error state of this W32Device to the Device::ErrorState enumerator De-
vice::CloseError, if isOpen() returns false or if the Windows device represented by this W32Device
cannot be closed successfully. Else the method sets the open mode of this W32Device to the De-
vice::OpenMode enumerator Device::NoAccess.

Returns:

true, if this W32Device could be closed successfully.
false, if this W32Device could not be closed successfully. Then the error state of this W32Device is
set to Device::CloseError.

See also:

isOpen(), open(), error ().

Reimplemented from stm::Device.

7.9.4.10 virtual int64_t stm::W32Device::read (void ∗ data, int64_t maxLen, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Read maxLen bytes from this W32Device into the data buffer.

Parameters:

→ data Buffer for the data to be read.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 49

← maxLen Maximal number of bytes to be read.
← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The

default value Device::DefaultTimeout means, that the default timeout of this W32Device is used.
← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this W32Device to the Device::ErrorState enumerator De-
vice::ReadError, if the result of openMode() does not contain the Device::OpenMode enumerator
Device::ReadAccess, or if maxLen is negative or data is the NULL pointer unless maxLen is also,
0 or if the read operation described below fails. During the read operation maximal maxLen bytes
from the Windows device represented by this W32Device are read and stored in the buffer pointed to
by data.

Returns:

The number of bytes actually read, if the read operation was successful.
-1, if the read operation was not successful. Then the error state of this W32Device is set to De-
vice::ReadError.

See also:

write(), control(), openMode(), error (), defaultTimeout().

Reimplemented from stm::Device.

7.9.4.11 virtual int64_t stm::W32Device::write (const void ∗ data, int64_t len, int timeout =
DefaultTimeout, unsigned int flags = NoFlags) [virtual]

Write len bytes from the data buffer to this W32Device.

Parameters:

← data Buffer containing the data to be written.
← len Number of bytes to be written.
← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The

default value Device::DefaultTimeout means, that the default timeout of this W32Device is used.
← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method sets the error state of this W32Device to the Device::ErrorState enumerator De-
vice::WriteError, if the result of openMode() does not contain the Device::OpenMode enumerator
Device::WriteAccess, or if len is negative or data is the NULL pointer unless len is also 0, or if the
write operation described below fails. During the write operation len bytes from the buffer pointed to
by data are written to the Windows device represented by this W32Device.

Returns:

len, if the write operation was successful.
-1, if the write operation was not successful. Then the error state of this W32Device is set to De-
vice::WriteError.

See also:

read(), control(), openMode(), error (), defaultTimeout().

Reimplemented from stm::Device.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.9 stm::W32Device Class Reference 50

7.9.4.12 virtual int64_t stm::W32Device::control (unsigned int request, const void ∗ inData, int64_t
inLen, void ∗ outData, int64_t maxOutLen, int timeout = DefaultTimeout, unsigned int flags =
NoFlags) const [virtual]

Perform the control operation request on this W32Device.

Parameters:

← request Specifies the particular control operation to be performed.

← inData Buffer containing the input data for the control operation.

← inLen Number of bytes of the input data.

→ outData Buffer for the output data generated by the control operation.

← maxOutLen Maximal number of the output data.

← timeout Operation timeout in milliseconds. If the value is Device::Forever, no timeout occurs. The
default value Device::DefaultTimeout means, that the default timeout of this W32Device is used.

← flags If the flag bit Device::AcceptTimeout is set, a timeout is no error.

Effects:

The method performs the control operation characterized by request for the Windows device repre-
sented by this W32Device. If any input data are required, the parameter inData shall point to a buffer
of length inLen containing them, else inData shall be NULL and inLen 0. If any data result is expected,
outData shall not be NULL and point to a buffer of size maxOutLen.

Returns:

The number of bytes available in outData, if the operation was successful. This is 0 in the case of an
accepted timeout.
-1, if the operation was not successful. Then the error state of this W32Device is set to the De-
vice::ErrorState enumerator Device::ControlError.

See also:

write(), read(), openMode(), error (), defaultTimeout().

Reimplemented from stm::Device.

7.9.4.13 virtual std::ostream& stm::W32Device::describe (std::ostream & os, unsigned int flags =
DefaultProperties) const [virtual]

Insert a description of this W32Device into os.

Parameters:

← os The output stream to insert the description.

← flags Description flags.

Effects:

The method inserts a verbal description of this W32Device into the output stream os. Format and
extent of the description is controlled by the flags parameter according to the bitwise ored enumerators
of Device::DescribeFlags and W32Device::DescribeFlags.

Returns:

The output stream os.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



7.10 stm::W32Device::InterfaceClass Struct Reference 51

Note:

This W32Device need not be open.

Reimplemented from stm::Device.

7.9.4.14 bool stm::W32Device::isA (const InterfaceClass & interfaceClass) const

The method returns true, if this W32Device is a device supporting the Windows device interface class
described by interfaceClass.

That means it returns true, if the Device::Descriptor of this W32Device describes a Windows device sup-
porting the Windows device interface class described by interfaceClass, else false.

7.9.4.15 template<class ForwardIterator> bool stm::W32Device::isA (ForwardIterator beginIn-
terfaceClass, ForwardIterator endInterfaceClass) const

The method template returns true, if this W32Device is a device supporting one of the the Windows
device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

That means it returns true, if the Device::Descriptor of this W32Device describes a Windows device sup-
porting one of the Windows device interface classes described by that interval, else false.

7.9.4.16 static size_t stm::W32Device::enumerate (std::vector< Descriptor > & descriptors, const
InterfaceClass & interfaceClass, bool append = false) [static]

Enumerate all Device::Descriptor objects describing Windows devices supporting the Windows device
interface class described by interfaceClass.

The static method clears the vector descriptors, scans the system for all Windows devices supporting the
Windows device interface class described by interfaceClass, stores the Device::Descriptor objects describ-
ing those devices in the vector descriptors and returns the size of that vector.

7.9.4.17 template<class ForwardIterator> static size_t stm::W32Device::enumerate (std::vector<
Descriptor > & descriptors, ForwardIterator beginInterfaceClass, ForwardIterator endInterface-
Class, bool append = false) [static]

Enumerate all Device::Descriptor objects describing Windows devices supporting one of the the Windows
device interface classes whose description is contained in the half open interval [∗beginInterfaceClass,
∗endInterfaceClass).

The static method template clears the vector descriptors, scans the system for all Windows devices support-
ing one of the Windows device interface classes described by that interval, stores the Device::Descriptor
objects describing those devices in the vector descriptors and returns the size of that vector.

7.10 stm::W32Device::InterfaceClass Struct Reference

Inheritance diagram for stm::W32Device::InterfaceClass:

stm::W32Device::InterfaceClass

stm::Uuid

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



8 SysToMath IO C++ Libraries Interface File Documentation 52

Collaboration diagram for stm::W32Device::InterfaceClass:

stm::W32Device::InterfaceClass

stm::Uuid

7.10.1 Detailed Description

Type describing a Windows device interface class.

Such a Windows device interface class is characterized by their GUID.

Definition at line 505 of file w32device.hpp.

Public Member Functions

• InterfaceClass ()
Default constructor yielding an invalid W32Device::InterfaceClass object.

• InterfaceClass (const GUID &interfaceClassGuid)
Constructor yielding a W32Device::InterfaceClass object describing the Windows device interface class
characterized by their GUID interfaceClassGuid.

7.10.2 Constructor & Destructor Documentation

7.10.2.1 stm::W32Device::InterfaceClass::InterfaceClass ()

Default constructor yielding an invalid W32Device::InterfaceClass object.

7.10.2.2 stm::W32Device::InterfaceClass::InterfaceClass (const GUID & interfaceClassGuid)

Constructor yielding a W32Device::InterfaceClass object describing the Windows device interface class
characterized by their GUID interfaceClassGuid.

8 SysToMath IO C++ Libraries Interface File Documentation

8.1 device.hpp File Reference

8.1.1 Detailed Description

Abstract base class stm::Device forming the ANSI-C++ API for generic devices.

Version:

1.03-r41

Date:

2007-07-31 09:31:16 (Tom)

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



8.2 usbdevice.hpp File Reference 53

Author:

Tom Michaelis
SysToMath
Wittelsbacherstr. 7
D-80469 Munich

Contact:

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com

This header file declares the abstract base class stm::Device.

Definition in file device.hpp.

Namespaces

• namespace stm

Classes

• struct stm::Uuid
Universal unique identifier storing its fields in little endian format.

• class stm::Device
Abstract base class defining the C++ API for a generic device.

• struct stm::Device::Descriptor
Objects of type Device::Descriptor describe system dependent aspects of a Device as a pair of a void pointer
and a void function pointer.

• struct stm::Device::Version
Device driver version.

Functions

• std::ostream & stm::operator<< (std::ostream &os, const Device &device)
Insert a description of the Device device into os.

8.2 usbdevice.hpp File Reference

8.2.1 Detailed Description

Base class stm::UsbDevice forming the ANSI-C++ API for libusb controlled USB devices.

Version:

1.03-r41

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com


8.3 w32device.hpp File Reference 54

Date:

2007-07-31 09:31:17 (Tom)

Author:

Tom Michaelis
SysToMath
Wittelsbacherstr. 7
D-80469 Munich

Contact:

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com

This header file declares the base class stm::UsbDevice.

Definition in file usbdevice.hpp.

Namespaces

• namespace stm

Classes

• struct stm::UsbPipe
Type specifying the configuration, the interface, the alternate setting, and the endpoint of the USB pipe to
be used for a USB bulk or interrupt transfer.

• struct stm::UsbCtrl
Type specifying the request type encoding the transfer direction, the value and the index of a USB control
request.

• class stm::UsbDevice
Class defining the C++ API for a libusb controlled USB device inheriting the generic stm::Device C++
API.

• struct stm::UsbDevice::InterfaceClass
Type describing a libusb controlled USB device interface class.

8.3 w32device.hpp File Reference

8.3.1 Detailed Description

Base class stm::W32Device forming the ANSI-C++ API for Win32 devices.

Version:

1.01-r28

Date:

2007-06-13 01:28:56 (Tom)

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com


9 SysToMath IO C++ Libraries Interface Page Documentation 55

Author:

Tom Michaelis
SysToMath
Wittelsbacherstr. 7
D-80469 Munich

Contact:

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com

This header file declares the base class stm::W32Device.

Definition in file w32device.hpp.

Namespaces

• namespace stm

Classes

• class stm::W32Device
Class defining the C++ API for a Windows device inheriting the generic stm::Device C++ API.

• struct stm::W32Device::InterfaceClass
Type describing a Windows device interface class.

9 SysToMath IO C++ Libraries Interface Page Documentation

9.1 Microsoft Visual Studio Tool Family

The Microsoft Visual Studio tool family consists of the tool sets:

• Microsoft Visual Studio .NET 2003 (vc71)

• Microsoft Visual Studio 2005 (vc80)

9.1.1 Automatic Linking with Microsoft Visual Studio

On Microsoft Visual Studio .NET 2003 (vc71) and Microsoft Visual Studio 2005 (vc80) the necessary
libraries are linked automatically when one of the main library interface header files stm/w32device.hpp
or stm/usbdevice.hpp , unless this mechanism is suppressed by the definition of the preprocessor symbol
STM_NO_LIB, STM_W32DEVICE_NO_LIB or STM_USBDEVICE_NO_LIB before that inclusion.

The choice of the libraries depends on the tool set used (vc71 or vc80) and on the system runtime library
selected for the executable to be built. The SysToMath IO C++ Libraries package provides for each of
its non-header-only library modules four static library configurations (lib files) and two dynamic ones
(dll files). In the following list module stands for w32device or usbdevice and vcnn for vc71 or
vc80:

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen

http://www.SysToMath.com
mailto:Tom.Michaelis@SysToMath.com


9.2 GNU Tool Family 56

• DebugMt: Static debug library libstmmodule-vcnn-mt-gd.lib together with its debug
database file libstmmodule-vcnn-mt-gd.pdb chosen when linking against the multithreaded
debug DLL runtime (Compiler switch /MDd).

• DebugDllMt: Dynamic debug library stmmodule-vcnn-mt-gd.dll together
with its import library stmmodule-vcnn-mt-gd.lib and its debug database file
stmmodule-vcnn-mt-gd.pdb chosen when linking against the multithreaded debug DLL
runtime (Compiler switch /MDd) and defining the preprocessor variable STM_DYN_LINK before
the SysToMath C++ Libraries header file inclusion.

• DebugMtStaticRt: Static debug library libstmmodule-vcnn-mt-sgd.lib together with its
debug database file libstmmodule-vcnn-mt-sgd.pdb chosen when linking against the mul-
tithreaded static debug runtime(Compiler switch /MTd).

• ReleaseMt: Static release library libstmmodule-vcnn-mt.lib chosen when linking against
the multithreaded release DLL runtime (Compiler switch /MD).

• ReleaseDllMt: Dynamic release library stmmodule-vcnn-mt.dll together with its import li-
brary stmmodule-vcnn-mt.lib chosen when linking against the multithreaded release DLL
runtime (Compiler switch /MD) and defining the preprocessor variable STM_DYN_LINK before the
SysToMath C++ Libraries header file inclusion.

• ReleaseMtStaticRt: Static release library libstmmodule-vcnn-mt-s.lib chosen when link-
ing against the multithreaded static release runtime (Compiler switch /MT).

9.1.2 Environment

It is recommended that all static libraries (lib files) and their debug database files (pdb files) are located
in a directory contained in the compiler system library search path. Moreover, to satisfy the application
runtime requirements, it is recommended that all dynamic link libraries (dll files) and their debug database
files (pdb files) are located in the application directory or in a directory contained in the system executable
search path.

If you used the installation program LibStmIoSetup.exe to install the SysToMath IO C++ Libraries
with the installation root directory, say C:\Program Files\SysToMath and you use Microsoft Visual
Studio .NET 2003 (vc71) or Microsoft Visual Studio 2005 (vc80), then the aforementioned compiler
system directory recommendations are satisfied, if you add the following entries in Visual Studio, menu
Tools, Options, Projects, VC++ Directories:

• Executable Files: Add C:\Program Files\SysToMath\bin\w32

• Library Files: Add C:\Program Files\SysToMath\lib\w32

• Include Files: Add C:\Program Files\SysToMath\include

9.2 GNU Tool Family

The GNU tool family consists of the tool sets:

• GNU gcc for POSIX environment (cygwin)

• GNU gcc for Microsoft environment (cygming)

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



9.3 SysToMath Device C++ Library (Headers only) 57

The tool set cygwin (chosen by gcc or g++ without option -mno-cygwin) produces libraries depending
on the dynamic library cygwin1.dll and therefore is restricted to free open source software projects,
whereas the tool set cygming (chosen by gcc or g++ with option -mno-cygwin) produces libraries
only depending on the Microsoft runtime libraries and thus also allows commercial closed source software
projects.

9.2.1 Linking with the GNU Tool Family

The libraries for the GNU tool family have to be linked explicitely.

The choice of the libraries depends on the tool set used (cygwin or cygming) and on the system runtime
library selected for the executable to be built. The SysToMath IO C++ Libraries package provides for each
of its library modules two static library configurations (a files) and two dynamic ones (dll files). In the
following list module stands for w32device or usbdevice and cygxxx for cygwin or cygming:

• DebugMt: Static debug library libstmmodule-cygxxx-mt-d.a to be chosen for multi-
threaded debug enabled statically linked executables (the preprocessor variables _MT and _DEBUG
should be defined).

• DebugDllMt: Dynamic debug library stmmodule-cygxxx-mt-d.dll together with its import
library libstmmodule-cygxxx-mt-d.dll.a to be chosen for multithreaded debug enabled
dynamically linked executables (the preprocessor variables _MT, _DEBUG and STM_DYN_LINK
should be defined).

• ReleaseMt: Static release library libstmmodule-cygxxx-mt.a to be chosen for multi-
threaded not debug enabled statically linked executables (the preprocessor variables _MT and
NDEBUG should be defined).

• ReleaseDllMt: Dynamic release library stmmodule-cygxxx-mt.dll together with its import
library libstmmodule-cygxxx-mt.dll.a to be chosen for multithreaded not debug enabled
dynamically linked executables (the preprocessor variables _MT, NDEBUG and STM_DYN_LINK
should be defined).

9.2.2 Environment

It is recommended that all static libraries (a files) are located in a directory contained in the compiler
system library search path. Moreover, to satisfy the application runtime requirements, it is recommended
that all dynamic link libraries (dll files) are located in the application directory or in a directory contained
in the system executable search path.

If you used the installation program LibStmIoSetup.exe to install the SysToMath C++ Libraries
with the installation root directory, say C:\Program Files\SysToMath, and you have added
/cygdrive/c/Program Files/SysToMath/bin/w32 to your PATH environment variable, then
the aforementioned compiler system directory recommendations are satisfied, if you use the following
options in your gcc or g++ command lines:

• Include Files: Use -I"/cygdrive/c/Program Files/SysToMath/include"

• Library Files: Use -L"/cygdrive/c/Program Files/SysToMath/lib/w32"

9.3 SysToMath Device C++ Library (Headers only)

9.3.1 Content

The SysToMath Device C++ Library consits of header files only.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



9.4 SysToMath UsbDevice C++ Library 58

9.3.2 Usage

To compile an application which uses the SysToMath Device C++ Library, the public main interface header
file

• stm/device.hpp

shall be included and be located in a directory contained in the compiler system include search path.
Moreover, the implementation header file

• stm/impl/xdevice.hpp

shall also be located in a directory contained in the compiler system include search path.

9.4 SysToMath UsbDevice C++ Library

9.4.1 Content

The SysToMath UsbDevice C++ Library consits of the following object:

• UsbDevice: Base Class for USB Devices

9.4.2 Usage

To compile an application which uses the SysToMath USB Device C++ Library, the public main library
interface header file

• stm/usbdevice.hpp

shall be included and be located in a directory contained in the compiler system include search path.
Moreover, the implementation header files

• stm/impl/usbdeviceconfig.hpp

• stm/impl/xusbdevice.hpp

shall also be located in a directory contained in the compiler system include search path.

9.5 SysToMath W32Device C++ Library

9.5.1 Content

The SysToMath W32Device C++ Library consits of the following object:

• W32Device: Base Class for Win32 Devices

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



9.5 SysToMath W32Device C++ Library 59

9.5.2 Usage

To compile an application which uses the SysToMath Win32 Device C++ Library, the public main library
interface header file

• stm/w32device.hpp

shall be included and be located in a directory contained in the compiler system include search path.
Moreover, the implementation header files

• stm/impl/w32deviceconfig.hpp

• stm/impl/xw32device.hpp

shall also be located in a directory contained in the compiler system include search path.

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



Index
∼Device

stm::Device, 13
∼UsbDevice

stm::UsbDevice, 28
∼W32Device

stm::W32Device, 45

AcceptTimeout
stm::Device, 12

AllProperties
stm::Device, 12

ArgumentError
stm::Device, 11

augmentErrorString
stm::Device, 18

canControl
stm::Device, 16
stm::UsbDevice, 29
stm::W32Device, 46

canRead
stm::Device, 15
stm::UsbDevice, 29
stm::W32Device, 45

canSeek
stm::Device, 16

canWrite
stm::Device, 16
stm::UsbDevice, 29
stm::W32Device, 45

clearError
stm::Device, 18
stm::W32Device, 47

close
stm::Device, 19
stm::UsbDevice, 32
stm::W32Device, 48

CloseError
stm::Device, 11

control
stm::Device, 20
stm::UsbDevice, 36
stm::W32Device, 49

ControlError
stm::Device, 11

DefaultProperties
stm::Device, 12

DefaultTimeout
stm::Device, 13

defaultTimeout

stm::Device, 15
descr

stm::Device, 15
describe

stm::Device, 21
stm::UsbDevice, 36
stm::W32Device, 50

DescribeFlags
stm::Device, 12
stm::UsbDevice, 28
stm::W32Device, 44

Descriptor
stm::Device::Descriptor, 21

Device
stm::Device, 13

device.hpp, 52
Device: Abstract Base Class for Generic Devices, 3
DeviceAltSettings

stm::UsbDevice, 28
DeviceBusNumber

stm::UsbDevice, 28
DeviceChildren

stm::UsbDevice, 28
DeviceConfigurations

stm::UsbDevice, 28
DeviceEndpoints

stm::UsbDevice, 28
DeviceIfClass

stm::W32Device, 44
DeviceInstance

stm::W32Device, 44
DeviceInterfaces

stm::UsbDevice, 28
DeviceManufacturer

stm::UsbDevice, 28
DevicePath

stm::W32Device, 44
DeviceProduct

stm::UsbDevice, 28
DeviceReleaseNumber

stm::UsbDevice, 28
DeviceSerialNumber

stm::UsbDevice, 28
DeviceType

stm::Device, 12
DeviceUuid

stm::Device, 12
DriverVersion

stm::Device, 12

enumerate



INDEX 61

stm::UsbDevice, 37
stm::W32Device, 51

enumerateAll
stm::UsbDevice, 38

error
stm::Device, 17
stm::W32Device, 46

ErrorFlagMask
stm::Device, 12

ErrorFlags
stm::Device, 11

ErrorState
stm::Device, 11

errorString
stm::Device, 18

Forever
stm::Device, 13

hasProperty
stm::Device, 14

IndentFirst
stm::Device, 12

IndentMask
stm::Device, 12

InterfaceClass
stm::UsbDevice::InterfaceClass, 38
stm::W32Device::InterfaceClass, 52

isA
stm::UsbDevice, 37
stm::W32Device, 51

isNull
stm::Device::Version, 24
stm::Uuid, 41

isOpen
stm::Device, 19
stm::UsbDevice, 32
stm::W32Device, 47

Major
stm::Device::Version, 23

Micro
stm::Device::Version, 23

Minor
stm::Device::Version, 23

ModDevice
operator<<, 4

Nano
stm::Device::Version, 23

NoAccess
stm::Device, 11

NoError
stm::Device, 11

NoFlags
stm::Device, 12

NoPropertyNames
stm::Device, 12

octet
stm::Uuid, 41

open
stm::Device, 19
stm::UsbDevice, 32
stm::W32Device, 47

OpenError
stm::Device, 11

OpenMode
stm::Device, 11

openMode
stm::Device, 19

operator const void ∗
stm::Device::Descriptor, 21

operator!=
stm::Device::Version, 24
stm::Uuid, 41

operator<
stm::Device::Version, 24
stm::Uuid, 41

operator<<
ModDevice, 4

operator<=
stm::Device::Version, 24
stm::Uuid, 41

operator>
stm::Device::Version, 24
stm::Uuid, 41

operator>=
stm::Device::Version, 24
stm::Uuid, 41

operator=
stm::Device, 13
stm::Device::Version, 23
stm::Uuid, 40

operator==
stm::Device::Version, 24
stm::Uuid, 41

part
stm::Device::Version, 24

Parts
stm::Device::Version, 23

pipe
stm::UsbDevice, 31

pipeType
stm::UsbDevice, 31

pos
stm::Device, 20

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



INDEX 62

property
stm::Device, 14

read
stm::Device, 19
stm::UsbDevice, 33
stm::W32Device, 48

ReadAccess
stm::Device, 11

ReadError
stm::Device, 11

readPipe
stm::UsbDevice, 34

ReadWriteAccess
stm::Device, 11

reset
stm::Device, 21

ResourceError
stm::Device, 11

seek
stm::Device, 20

SeekError
stm::Device, 11

setDefaultTimeout
stm::Device, 15

setDescr
stm::Device, 15
stm::UsbDevice, 30

setError
stm::Device, 17
stm::UsbDevice, 30
stm::W32Device, 46

setPipe
stm::UsbDevice, 31

setProperty
stm::Device, 14

setType
stm::Device, 14

setUuid
stm::Device, 14

setVersion
stm::Device, 14

Size
stm::Uuid, 41

size
stm::Device, 20

stm::Device, 6
∼Device, 13
AcceptTimeout, 12
AllProperties, 12
ArgumentError, 11
augmentErrorString, 18
canControl, 16

canRead, 15
canSeek, 16
canWrite, 16
clearError, 18
close, 19
CloseError, 11
control, 20
ControlError, 11
DefaultProperties, 12
DefaultTimeout, 13
defaultTimeout, 15
descr, 15
describe, 21
DescribeFlags, 12
Device, 13
DeviceType, 12
DeviceUuid, 12
DriverVersion, 12
error, 17
ErrorFlagMask, 12
ErrorFlags, 11
ErrorState, 11
errorString, 18
Forever, 13
hasProperty, 14
IndentFirst, 12
IndentMask, 12
isOpen, 19
NoAccess, 11
NoError, 11
NoFlags, 12
NoPropertyNames, 12
open, 19
OpenError, 11
OpenMode, 11
openMode, 19
operator=, 13
pos, 20
property, 14
read, 19
ReadAccess, 11
ReadError, 11
ReadWriteAccess, 11
reset, 21
ResourceError, 11
seek, 20
SeekError, 11
setDefaultTimeout, 15
setDescr, 15
setError, 17
setProperty, 14
setType, 14
setUuid, 14
setVersion, 14

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



INDEX 63

size, 20
SystemError, 12
Timeout, 12
type, 14
UnknownError, 11
unsetProperty, 14
uuid, 14
VerboseProperties, 12
version, 14
write, 20
WriteAccess, 11
WriteError, 11

stm::Device::Descriptor, 21
Descriptor, 21
operator const void ∗, 21

stm::Device::Version, 22
isNull, 24
Major, 23
Micro, 23
Minor, 23
Nano, 23
operator!=, 24
operator<, 24
operator<=, 24
operator>, 24
operator>=, 24
operator=, 23
operator==, 24
part, 24
Parts, 23
string, 23
Version, 23

stm::UsbCtrl, 24
stm::UsbDevice, 25

∼UsbDevice, 28
canControl, 29
canRead, 29
canWrite, 29
close, 32
control, 36
describe, 36
DescribeFlags, 28
DeviceAltSettings, 28
DeviceBusNumber, 28
DeviceChildren, 28
DeviceConfigurations, 28
DeviceEndpoints, 28
DeviceInterfaces, 28
DeviceManufacturer, 28
DeviceProduct, 28
DeviceReleaseNumber, 28
DeviceSerialNumber, 28
enumerate, 37
enumerateAll, 38

isA, 37
isOpen, 32
open, 32
pipe, 31
pipeType, 31
read, 33
readPipe, 34
setDescr, 30
setError, 30
setPipe, 31
UsbDevice, 28
write, 34
writePipe, 35

stm::UsbDevice::InterfaceClass, 38
InterfaceClass, 38

stm::UsbPipe, 38
stm::Uuid, 39

isNull, 41
octet, 41
operator!=, 41
operator<, 41
operator<=, 41
operator>, 41
operator>=, 41
operator=, 40
operator==, 41
Size, 41
string, 40
Uuid, 40

stm::W32Device, 42
∼W32Device, 45
canControl, 46
canRead, 45
canWrite, 45
clearError, 47
close, 48
control, 49
describe, 50
DescribeFlags, 44
DeviceIfClass, 44
DeviceInstance, 44
DevicePath, 44
enumerate, 51
error, 46
isA, 51
isOpen, 47
open, 47
read, 48
setError, 46
W32Device, 44
write, 49

stm::W32Device::InterfaceClass, 51
InterfaceClass, 52

string

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen



INDEX 64

stm::Device::Version, 23
stm::Uuid, 40

SystemError
stm::Device, 12

SysToMath Device C++ Library, 3
SysToMath USB Device C++ Library, 4
SysToMath Win32 Device C++ Library, 5

Timeout
stm::Device, 12

type
stm::Device, 14

UnknownError
stm::Device, 11

unsetProperty
stm::Device, 14

UsbDevice
stm::UsbDevice, 28

usbdevice.hpp, 53
UsbDevice: Base Class for USB Devices, 5
Uuid

stm::Uuid, 40
uuid

stm::Device, 14

VerboseProperties
stm::Device, 12

Version
stm::Device::Version, 23

version
stm::Device, 14

W32Device
stm::W32Device, 44

w32device.hpp, 54
W32Device: Base Class for Win32 Devices, 6
write

stm::Device, 20
stm::UsbDevice, 34
stm::W32Device, 49

WriteAccess
stm::Device, 11

WriteError
stm::Device, 11

writePipe
stm::UsbDevice, 35

Generated on Thu Jan 3 20:42:21 2008 for SysToMath IO C++ Libraries Interface by Doxygen


	SysToMath IO C++ Libraries Interface Main Page
	SysToMath IO C++ Libraries Interface Module Index
	SysToMath IO C++ Libraries Interface Class Index
	SysToMath IO C++ Libraries Interface Class Index
	SysToMath IO C++ Libraries Interface File Index
	SysToMath IO C++ Libraries Interface Module Documentation
	SysToMath IO C++ Libraries Interface Class Documentation
	SysToMath IO C++ Libraries Interface File Documentation
	SysToMath IO C++ Libraries Interface Page Documentation

